CZE method development for more hydrophobic pharmaceuticals

and

an investigation of the orthogonality between RP-HPLC and CZE

CE-users meeting KVCV-KNCV 19 November 2006 Freek Eijnthoven

Contents

- Setting
- Objectives
- Results
- Conclusion
- Questions and Discussion

Setting

- Pharmaceutical products need to be fully characterized
- ICH-guidelines ^[1] require either reporting, identification or qualification of all impurities

[1] International Conference on Harmonisation (ICH) of Technical Requirements for Registration of Pharmaceuticals for Human Use, -Q3A-R2- (2006) & -Q3B-R2- (2006)

Setting

- RP-HPLC is capable of this demanding task
- Stability indicating power of the validated method
- Critical regions in chromatogram regarding co-elution
- Demand for **orthogonal** techniques:
 - By definition a different separation obtained
 - Not a 2D-instrument, but parallel instruments
 - Indicates strengths and weaknesses of methods
 - Increases confidence in validated method
 - Techniques like NPLC, RPLC, GC and CZE

• Critical regions in chromatogram regarding co-elution

- Demand for **orthogonal** techniques:
 - By definition a different separation obtained
 - Not a 2D-instrument, but parallel instruments
 - Indicates strengths and weaknesses of methods
 - Increases confidence in validated method
 - Techniques like NP-HPLC, GC and CZE

[2] M. Jimidar, M. De Smet, et.al. -*Capillary electrophoresis as an orthogonal technique in HPLC method validation*- Journal of Capillary Electrophoresis and Microchip technologies 008 3/4 (2003) 45-52

Objectives

- Part I:
 - Experimental conditions to analyse more hydrophobic, 3 < log(P) < 7, SLV-compounds using CZE
 => Generic BGEs to serve as smart starting points for CZE method development
- Part II
 - Tool to determine the level of orthogonality between analytical methods and especially CZE vs RP-HPLC => value of CZE

- Fraction of organic solvent in BGE:
 - At least uncommon in CZE
 - Initiates several side-effects:
 - Evaporation of solvents during analysis
 - Requires compatibility of buffer salts and additives
 - Different ^s _w pH of BGE due to medium effect
 - Shift in pK_a of compounds due to medium effect
 - Different analyte ionisation level a and effective migration μ_{eff}

• Impact of the medium effect ^[3]:

background electrolyte-, Journal of Chromatography A 1037 (2004) 455-465

• Example of generic BGE with Δ % ACN:

Electropherograms collected using: HP 3D CE system, Agilent standard capillary (L_{tot} 48.5 cm, L_{eff} 40.0 cm, I.D. 50 µm and T = 30 °C), PDA (?=200 nm and $?_{ref}$ =450 nm), injection performed with 50 mbar for 5 s, 25 kV applied starting with voltage ramp 0-25 kV in 0.2 min. All analyte concentrations were about 1 mg/mL. Electrolyte system consisted of 0.1 M TRIS adjusted to w_{w} pH 2.5 by adding *o*-phosphoric acid (85% m/m)

- In BGE fraction of 50% (v/v) ACN:
 - Increased solubility strength
 - Rather low impact of medium effect (resembling compounds)
 - Adequate electrophoretic migration, separation pattern
 - Not all SLV-compounds rapidly dissolved

- Full replacement of water in BGE:
 - Mode is called non-aqueous CZE (NACE)
 - Applications described in literature, small part of all CZE
 - Restricted solvent choice
 - $s_w pH$ not determined, make use of constant fraction of acid

- NACE resulted in:
 - Even higher solubility, all basic compounds dissolved
 - Solvent evaporation could be easily prevented
 - Poor \mathbf{m}_{eff} if $pK_a \text{ low} \Rightarrow \text{low } \mathbf{a}$ due to medium effect
 - Various initiatives to increase the *a* were unsuccessful \rightarrow *Preference: the BGE should contain* 50%H₂O
 - Poor peak shape \Rightarrow poor mobility match
 - └→ *Requirement: the BGE must contain a proper co-ion*

• NACE versus aqueous-organic BGEs BGE: HCOOH in 50/50 ACN/MeOH (a) and TRIS in 50/50 ACN/H₂O (b)

Both electropherograms collected using: HP 3D CE system, Agilent standard capillary (L_{tot} 48.5 cm, L_{eff} 40.0 cm, I.D. 50 µm and T = 30 °C), PDA (?=200 nm and ?_{ref}=450 nm), injection performed with 50 mbar for 5 s, 25 kV applied starting with voltage ramp 0-25 kV in 0.2 min. Concentration of main compound about 1 mg/mL, impurities about 0.1 mg/mL.

Conclusion (part I)

- Addition of organic solvent lifts solubility strength of BGE
- Main side-effect is a decrease in *a* if modifier?
- For the vast majority of compounds H₂O fraction in BGE preferred
- CZE-analysis of pharmaceuticals requires a proper co-ion
- CZE can handle moderately hydrophobic compounds and has high separation potency towards impurities
- Generic BGE conditions determined for basic compounds

Conclusion (part I)

• Selection of proper generic BGE for CZE method development

- Tools to determine level of orthogonality:
 - Described in literature, 3 principles selected:
 - Data variance: PCA
 - Spatial distances: WPGMA clustering
 - Correlation: Colormaps, HAAL clustering, Orthogonality factor *F*
 - Processing data:
 - Chromatographic (RRT) and electrophoretic behavior (REM)
 - Included 34 SLV-compounds
 - 16 RP-HPLC systems (4 buffer salts, always C_{18} as stationary phase)
 - 4 CZE systems (BGE A, B, E and F)

{1}

• Principle of the correlation coefficient *r*^[4]:

•
$$r = \frac{\sum_{i} \left(\left(x_{i} - \overline{x} \right) \left(y_{i} - \overline{y} \right) \right)}{\sqrt{\left(\sum_{i} \left(x_{i} - \overline{x} \right)^{2} \right) \left(\sum_{i} \left(y_{i} - \overline{y} \right)^{2} \right)}}$$

• Value: $-1 \leq r \leq 1$

• Examples of *r*:

[4] J. Miller, J. Miller –*Statistics and Chemometrics for Analytical Chemistry*-, ISBN 0130228885, Pearson Education Limited, Dorset Press, 4th edition (2000)

• Colormap to indicate |r/ between methods ^[5]

[5] E. Van Gyseghem, et.al. -Orthogonality and similarity within silica-based reversed-phased chromatographic systems- Journal of Chromatography A 1074 (2005) 117-131

- Cluster analysis tool ^[6]:
 - Processes dissimilarity values D? D = 1 |r|
 - In each clustering step methods with smallest *D* are linked
 - Using hierarchical agglomerative average linking (HAAL):
 - Linked methods are represented by their averaged *D*-values

[6] P. Forlay-Frick et.al. -Selection of orthogonal chromatographic systems based on parametric and non-parametric statistical tests-, Analytica Chimica Acta 539 (2005) 1-10

• Dendrogram after HAAL-clustering:

Conclusion (part II)

- Tools, from literature, were applied on RRT/REM-pattern
- Dataset not enormous, strong indications after using different tools
- Tools based on correlation were found most favorable, since these are simple and can point out orthogonal methods
- Low level of orthogonality within one technique, especially within generic RP-HPLC-methods
- RP-HPLC and CZE had high level of orthogonality
- CZE was proven to be orthogonal towards RP-HPLC

Summary

- More hydrophobic compounds can be analyzed by CZE
- Even generic CZE methods show extreme selectivity
- Aqueous-organic BGEs can be applied easily
- Medium effect occurred only for highly organic BGEs
- Selection of proper co-ion can increase resolution
- Comparison of the elution and migration order of APIs with impurities
- A large dataset is of major importance
- Relative poor orthogonality observed within one technique
- Much more orthogonality between RP-HPLC and CZE methods
- CZE was proven to be orthogonal towards RP-HPLC

Questions or Discussion

Thanks goes to following Solvay Pharmaceutals researchers: Marco Ruijken, Norbert Lammers, Piet Hoogkamer and Pim Muijselaar

Improved peak shape due to proper co-ion
 BGE: 4% v/v HCOOH in MeOH/ACN:50/50 (v/v), with addition of buffersalt NH₄OOCH (a) or TEtOHA (b)

Both electropherograms collected using: HP 3D CE system, Agilent standard capillary (L_{tot} 48.5 cm, L_{eff} 40.0 cm, I.D. 50 µm and T = 30 °C), PDA (?=200 nm and ?_{ref}=450 nm), injection performed with 50 mbar for 5 s, 25 kV applied starting with voltage ramp 0-25 kV in 0.2 min. Concentration of main compound about 0.1 mg/mL, impurities about 0.01 mg/mL.

Introduction Objectives Theory Results Conclusion Recommendations

• Sample: Mebeverine and 5 impurities (all ± 1 mg/mL), BGE: 100 mM TRIS and *o*-phosphoric acid at ${}^{w}_{w}pH = 2.5$ in H₂O/ACN : 50 / 50

Electropherogram collected using: HP 3D CE system, Agilent standard capillary (L_{tot} 48.5 cm, L_{eff} 40.0 cm, I.D. 50 µm and T = 30 °C), PDA (?=200 nm and ?_{ref} =450 nm), injection performed with 50 mbar for 5 s, 25 kV applied starting with voltage ramp 0-25 kV in 0.2 min. Concentration of main compound about 1 mg/mL, impurities about 0.01 mg/mL.