

Vrije Universiteit Brussel

Evaluation of Capillary Electrochromatography as Chiral Separation Technique

Definition of a Chiral Separation Strategy

- D. Mangelings¹, M. Maftouh², Y. Vander Heyden¹
- ¹ Dept. Analytical Chemistry and Pharmaceutical Technology, Vrije Universiteit Brussel
- ² Discovery Analytics department, Sanofi-Aventis Discovery Research

Outline

1. Introduction

- Chirality
- Capillary Electrochromatography
- 2. Aim
- 3. Methodology
- 4. Strategy
 - Acidic
 - Non-acidic
- 5. Conclusions & Future Perspectives

"Existence of <u>non-superimposable</u> (forms) of an asymmetric molecule that are <u>mirror images</u> of each other"

Chirality utilarid.S

Enantiomer 2

Drug molecules are often chiral and will exhibit different activities in the human body

Drug receptor

COOH

R

COOH

NF

R

Enantiomer 1

Chirality utilaria

Drug molecules are often chiral and will exhibit different activities in the human body

R

Nŀ

- Enantiomer 1: cherapeutic effect COOH

Nł

R

Enantiomer 1

Chirality utilaria

Drug molecules are often chiral and will exhibit different activities in the human body

- Enantiomer 1: cherapeutic effect COOH
- Enantiomer 2: no effect, reduced effect

NF

Chirality utilaria

another effect, side effect toxic effect (Softenon®)

Enantiomer 2

NH

Chirality

Single-enantiomer drugs preferred

Methods to separate and quantify enantiomers are needed for registration of a drug molecule In early drug development:

- Racemates (mixture of enantiomers) synthesized
- Fast screening of potential chiral drug molecules is performed → reduces method development time

Generic screening and optimization strategies can be useful

Chirality utilaria

Chirality

Separation techniques for chiral compounds

- NPLC : Normal-Phase Liquid Chromatography
- RPLC : Reversed-Phase Liquid Chromatography
- POSC : Polar Organic Solvent Chromatography
- SFC : Supercritical Fluid Chromatography
- GC : Gas Chromatography
- CE : Capillary Electrophoresis
- CEC : Capillary Electro Chromatography???

Strategies + Chiral knowledge-based system

Capillary Electrochromatography

Hybrid technique: combines HPLC & CE

Is it possible to define generic screening and optimization strategies by means of CEC?

- Applicable on large sets of structurally diverse molecules
- Idea of enantioselectivity in a relatively few number of experiments
- Achieve baseline separations (Rs = 1,5) for most components

Methodology

Used CSP:

Cellulose derivatives

Chiralcel[®] OD-RH Chiralcel[®] OJ-RH

- Amylose derivatives
 Chiralpak[®] AD-RH
 Chiralpak[®] AS-RH
 Commercial LIDLC phase
- Commercial HPLC phases
 used 5 µm

Chiralpak AD-RH

Chiralcel OD-RH

Methodology

- Definition of strategies based on:
 - Literature + preliminary results
 - Experimental design: effects [ACN], pH, applied voltage, [buffer], temperature

Set of limited number (3-5) of components

 Evaluation of the strategies on their applicability by means of large test sets

Methodology

Neutral chiral selectors

- -Substances must be uncharged
- -Two separate strategies, combined into one

Acidic molecules Basic Bifunctional Neutral

Chiral Separation Strategy

Chiral Separation Strategy General structure

Acidic compounds Optimization 1 (0 < Rs < 1,5)

Acidic compounds Optimization 1 (0 < Rs < 1,5)

Fenoprofen

Non-acidic compounds Optimization 1 (0 < Rs < 1,5)

Non-acidic compounds Optimization 1 (0 < Rs < 1,5)

Toliprolol

Acidic & Non-acidic compounds Optimization 2 (Rs > 1,5)

Acidic compounds Optimization 2 (Rs > 1,5)

Coumachlor

Non-acidic compounds Optimization 2 (Rs > 1,5)

Meberevine

Evaluation of strategies

Acidic

- Screening
 - 5/15 baseline separated
 - ≻6/15 partially separated
 - ≻4/15 not separated
- After optimization steps
 10/15 baseline separated
 1/15 partially separated
 4/15 not separated

Evaluation strategies

Non - acidic

– Screening

- ▶16/48 baseline separated
- ▶ 15/48 partially separated
 - 17/48 not separated

After optimization steps

- ≥21/48 baseline separated
- ➤ 20/48 partially separated
 - not separated

Conclusions

- CEC has potential for chiral separations
- Generic separation strategies can be defined using polysaccharide CSP
- Good results can be obtained with the proposed strategy
 - v Over 80 % of test compounds showed enantioselectivity after execution
 - v More than 65 % of the substances were partially/baseline separated at screening conditions
 - Only 49 % resulted in a Rs = 1.50 (optimization)

Conclusions

- Several drawbacks CEC
 - No robust columns
 - Frits in the columns cause fragility
 - Lack of CEC instruments
 - No loop injection
 - Between-column variability
- Researchers still continue to work with CEC and on these drawbacks

Future perspectives

- Monolithic stationary phases: absence of frits
 - Silica based
 - Polymer based
- Sub-micronsized particle stationary phases
 - High efficiencies
- Instrument for CEC allows:
 - CE/CEC/p-CEC/CLC
 - Loop injection, high pressurization

Acknowledgements

- Dr. D. Mangelings
- Dr. M. Maftouh (Sanofi-Aventis)
- Profs. P.J. Schoenmakers & W.Th. Kok (UvA)
- B. Eeltink & R. Stol (UvA)
- C. Suteu (Chiral Technologies)

Thank you for your attention