Applications of high resolution ICP-MS in the central analytical lab at SOLVAY

Wim DEVOS, Marc Pigneur

SOLVAY Research and Technology Materials Development and Analysis Competence Center Brussels

Introduction

Key tasks of the central analysis lab:

- Technical assistance (problem solving) to
 - Solvay research groups
 - SBUs (plants)
 - environmental department
 - external clients
- Development and harmonization of analytical methods between the different analytical labs within Solvay
 - Follow new developments in analytical chemistry

few routine analyse

SOLVAY

samples can be virtually any Solvay raw material, intermediate or finished product

PLASTICS

- PVC
- ♦ PEEK
- Polysulfones (PSU)
- Polyphenylene sulfide (PPS)
- Polyamide-imide (PAI)
- Polyarylamide (PA)
- Polyphtalamide (PPA)
- Fluoroelastomers

SOLVAY

- Fluorin. polymer fluids (PFPE)
- ♦ PVDF, PFA, PTFE, ETFE...
- PVDC
- Polymer compounds (PE, PP, PVC) …

3 SECTORS

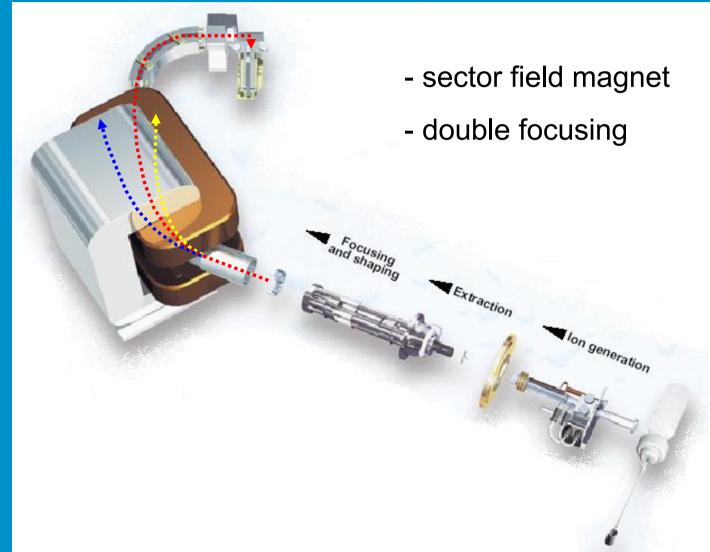
CHEMICALS

- Soda ash (Na_2CO_3)
- Sodium bicarbonate (NaHCO₃)
- Caustic soda (NaOH)
- ♦ Ba & Sr salts
- Caprolactones
- Glycerol & polyglycerol
- Chlorinated organics & inorganics
- \bullet H₂O₂
- Peracetic acid
- Persalts
- CaCO₃ & Mg salts
- Fluorinated molecules
- Organics ...

Studiedag Elementanalyse KVCV 25.10.2007

PHARMA

- Cardiometabolics
- Neurosience
- Flu vaccines
- Pancreatic enzymes
- Gastroenterology
- Women's and men's health


© 2007, SOLVAY S.A.

Confidential

High resolution ICP-MS: what, when and why?

Principle of HR-ICP-MS (Thermo Element2)

SOLVAY Studiedag Elementanalyse KVCV 25.10.2007

Confidential

When do we use (HR-)ICP-MS?

Iow detection limits needed and/or only a small sample quantity available

Why a high resolution instrument?

wide diversity of analysis requests and sample matrices, very few routine

 great variety of (unexpected) spectral interferences
 avoid optimization of a reaction/collision cell parameters for every new analysis request

Confidential

Examples of applications with HR-ICP-MS

1. Metal ultra-trace impurities in ultrapure fluoropolymers

2. Metals pollutants in effluents from soda ash plants

SOLVAY Studiedag Elementanalyse KVCV 25.10.2007

Confidential

Example 1: ultrapure fluoropolymers

FLUOROPOLYMERS PVDF, PFA, perfluoroelastomers...

 high temperature resistance
 very resistant towards corrosive reagents (UPW, acids, H₂O₂, ...)
 can be produced with high purity (low cations & anions, no stabilizers, plasticizers or additives)
 good ageing resistance
 can be moulded or extruded

 \rightarrow

SOLVAY

very well suited for liquid distribution systems in semiconductor industry...

Studiedag Elementanalyse KVCV 25.10.2007

Confidential

... but they are demanding samples for an inorganic analyst

 typical trace metal concentrations in high purity PVDF: sub-ppb to at most a few hundred ppb

difficult to get into solution

SOLVAY Studiedag Elementanalyse KVCV 25.10.2007

Confidential

SEMI®* GUIDELINES

*Semiconductor Equipment and Materials International

 SEMI F40 & F57: leachout tests for surface extractable contaminants

- in water, H₂O₂, ... at 20-85 °C
- specifications for 16 cations (+ 7 anions + TOC) for 7 days leachout in water at 85 °C

SEMI F48: bulk trace metals analysis in polymers
 digestion in closed vessel or by dry ashing
 list of 20 elements

Confidential

e.g. leachout test on fluoroelastomer O-rings: Comparison between 1 month leaching in ultrapure H2O at 80 °C 1 month leaching in "Piranha fluid" at 80 °C "Piranha fluid" = u.p. H₂SO₄ 96% / u.p. H₂O₂ 30% 3:1 (v/v) 1 week leaching in u.p. 49% HF at room temperature

Rinsing 10 x 2 min

SOLVAY

Leachout in duplicate + 3 proced. blanks Measurement by HR-ICP-MS

Studiedag Elementanalyse KVCV 25.10.2007

Confidential

Lab environment

sub-µg/l trace level analysis needs a clean working environment !

SOLVAY Studiedag Elementanalyse KVCV 25.10.2007

Confidential

Class 10000 clean room

SOLVAY Studiedag Elementanalyse KVCV 25.10.2007

Confidential

SOLVAY Studiedag Elementanalyse KVCV 25.10.2007

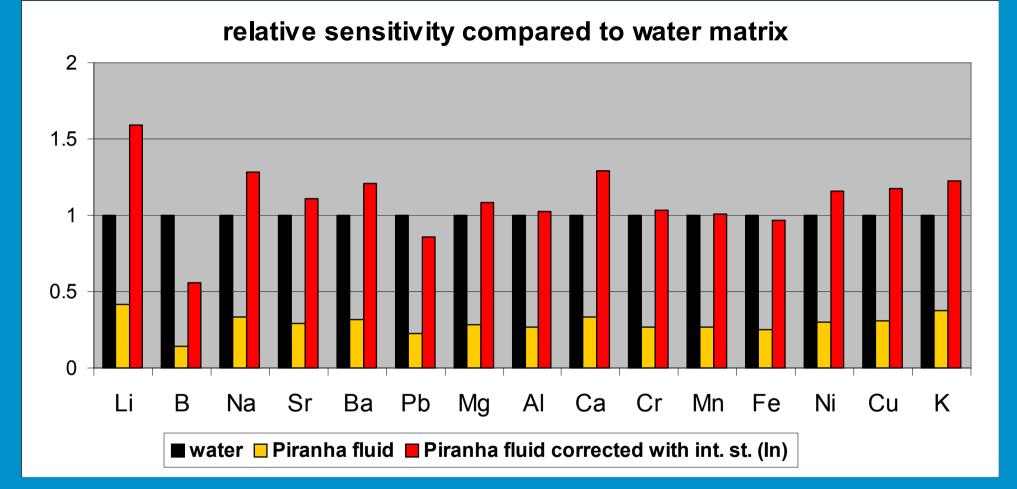
Confidential

FEP bottles

SOLVAY Studiedag Elementanalyse KVCV 25.10.2007

Confidential

ICP-MS Measurements:


SOLVAY

Dilution before the measurements: • H_2O matrix: no dilution • 49% HF and "Piranha fluid":10 x dilution Sample introduction system: • H₂O and "Piranha fluid": quartz, Pt cones • HF: **HF-resistant**, Pt cones Inter tion) Calib natching

Studiedag Elementanalyse KVCV 25.10.2007

Confidential

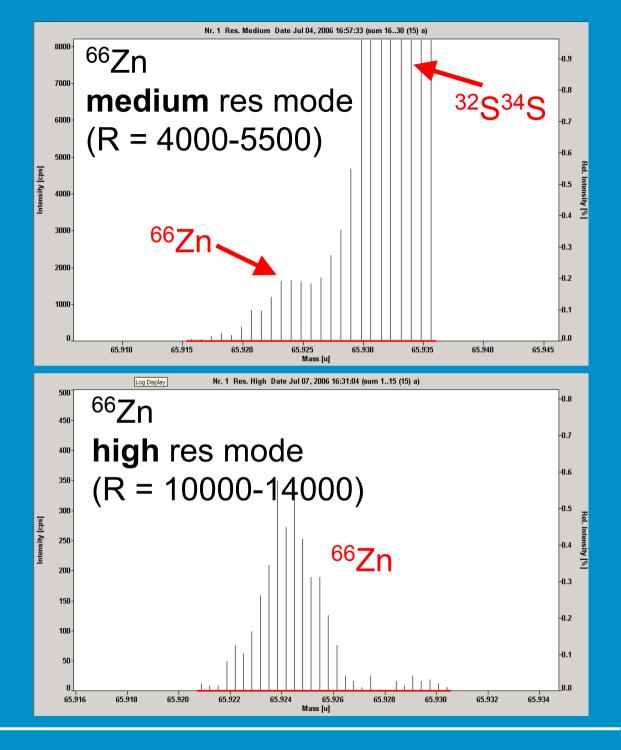
Matrix effect in 10x diluted Piranha fluid

Matrix matching is necessary !!!

Studiedag Elementanalyse KVCV 25.10.2007

SOLVAY

Confidential


Interferences:

SOLVAY

e.g. ⁶⁶Zn interfered in 10x diluted Piranha fluid by

³² S ³⁴ S	R = 4742
³⁴ S ¹⁶ O ₂	R = 2083
³² S ¹⁶ O ¹⁸ O	R = 1644

Piranha fluid = $H_2SO_4 96\% / H_2O_2 30\%$ 3:1 (v/v)

Studiedag Elementanalyse KVCV 25.10.2007

Confidential

Results: comparison WATER – PIRANHA – 49% HF

extractable conc., nomalized to average in WITHDRAWN FROM PUBLICAT WATER (=1)

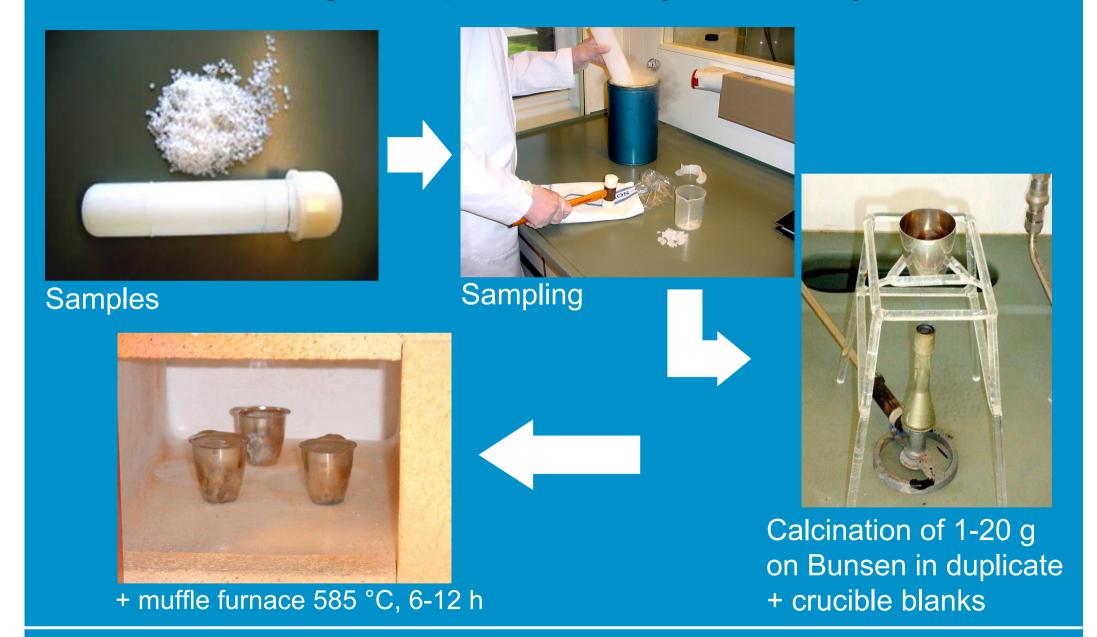
SOLVAY Studiedag Elementanalyse KVCV 25.10.2007

Confidential

SEMI®* GUIDELINES

*Semiconductor Equipment and Materials International

 SEMI F40 & F57: leachout tests for surface extractable contaminants


● in water, H₂O₂, ... at 20-85 °C

 specifications for 16 cations (+ 7 anions + TOC) for 7 days leachout in water

SEMI F48: bulk trace metals analysis in polymers
 digestion in closed vessel or by dry ashing
 list of 20 elements

Confidential

Bulk trace metals in high purity PVDF: analytical procedure (SEMI F48)

SOLVAY

Studiedag Elementanalyse KVCV 25.10.2007

Confidential

Residue recovery:

SOLVAY

residue taken up in 2 ml conc. u.p. HCI

evaporation till dryness on hotplate

residue taken up in 1 ml hot conc. u.p. HNO_3 + Sc,In,Bi

brought to volume (20-50ml) with u.p. H₂O in FEP bottle

measurement by HR-ICP-MS (external calibration)

Studiedag Elementanalyse KVCV 25.10.2007

Confidential

Method detection limits

The method detection limits are mainly determined by:

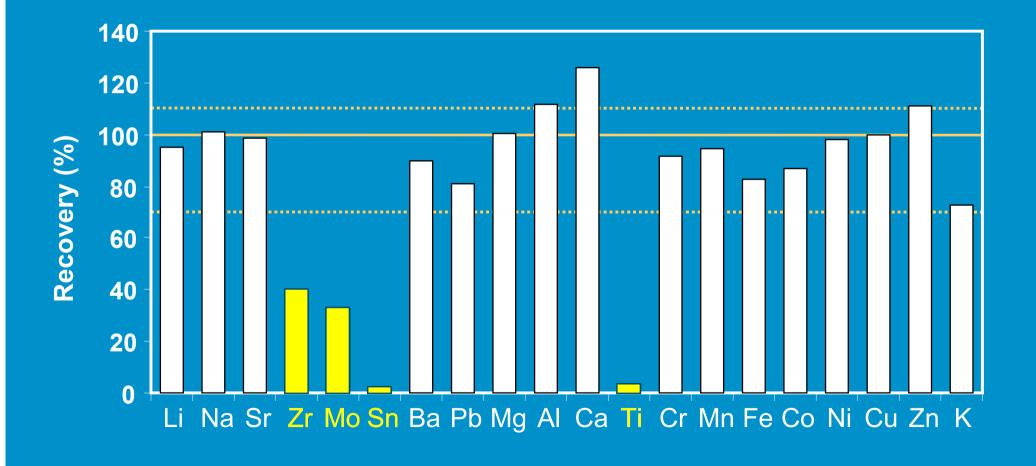
 contamination of the instrument by other sample matrices

• the amount of sample available (dilution factor)

the cleanliness of the procedure blanks (crucibles)

LOD (30) for 10 g PVDF in 50 ml

	LOD (3σ) (ppb)			LOD (3s) (ppb)	
	instrum.	proced.		instrum.	proced.
Li (LR)	0.1	0.6	Ca (MR)*	1	4
Na (LR)	1	1	Ti (MR)	0.04	0.8
Sr (LR)	0.004	0.01	Cr (MR)	0.01	0.6
Zr (LR)	0.003	5	Mn (MR)	0.002	0.03
Mo (LR)	0.001	0.1	Fe (MR)	0.05	1
Sn (LR)	0.01	0.3	Co (MR)	0.01	0.04
Ba (LR)	0.005	0.06	Ni (MR)	0.2	0.7
Pb (LR)	0.004	0.3	Cu (MR)	0.03	(8)
Mg (MR)	0.05	0.2	Zn (MR)	0.07	4
AI (MR)	0.3	8	K (HR)	0.12	0.5
	*Ca42				


SOLVAY

Studiedag Elementanalyse KVCV 25.10.2007

Confidential

Analyte recovery


100 ppb spike (Merck VIII + 1 g/I Merck stand. sol. for Ti, Zr, Mo, Sn)

SOLVAY Studiedag Elementanalyse KVCV 25.10.2007

Confidential

Example 2: Trace metals in a > 100 g/l CaCl₂ + NaCl matrix

SOLVAY Studiedag Elementanalyse KVCV 25.10.2007

Confidential

Determination of metals in a > 100 g/I CaCl2 + NaCl matrix

- solutions contain > 100 g/l CaCl₂ + NaCl \blacklozenge
- 60-150 x dilution and acidification (HNO₃) before analysis \blacklozenge
- use of a second sample introduction system (quartz) to avoid \blacklozenge memory effects on Na or Ca determinations in other sample types
- matrix difficult to matrix match \rightarrow calibration by standard addition \blacklozenge
- internal standard(s) for drift correction \blacklozenge
- heavy Ca and Na matrix -> many severe spectroscopic \diamond interferences

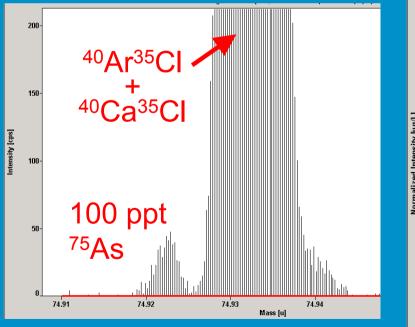
Some potential interferences in a CaCl2 + NaCl (+SO₄²⁻) matrix:

SOLVAY

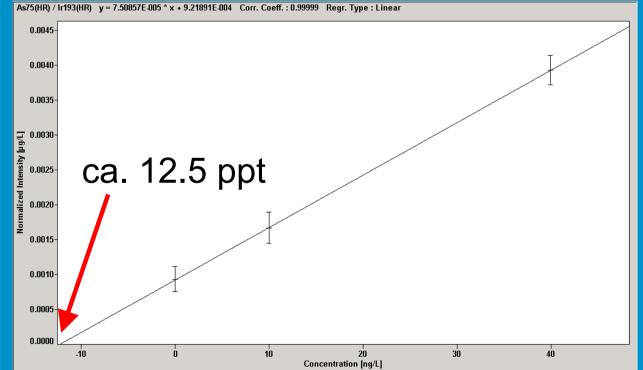
	Measuring mode to separate interferences			
	Medium resolution	High resolution		
²⁷ AI				
⁵² Cr	³⁶ Ar ¹⁶ O, ³⁸ Ar ¹⁴ N, ³⁵ Cl ¹⁷ O, ³⁵ Cl ¹⁶ O ¹ H			
⁵³ Cr	³⁷ CI ¹⁶ O, ³⁵ CI ¹⁸ O, ³⁸ Ar ¹⁴ N			
⁵⁵ Mn	⁴⁰ Ar ¹⁴ N ¹ H, ⁹⁶ K ¹⁶ O			
⁵⁴ Fe	⁵⁴ Cr, ⁴⁰ Ar ¹⁴ N, ³⁷ Cl ¹⁶ O ¹ H			
⁵⁶ Fe	⁴⁰ Ar ¹⁶ O, ⁴⁰ Ca ¹⁶ O			
⁵⁷ Fe	⁴⁰ Ar ¹⁶ O ¹ H, ⁴⁰ Ca ¹⁶ O ¹ H			
⁵⁹ Co	³⁶ Ar ²³ Na, ⁴³ Ca ¹⁶ O			
⁵⁸ Ni	⁵⁸ Fe, ⁴² Ca ¹⁶ O			
⁶⁰ Ni	⁴⁴ Ca ¹⁶ O, ²³ Na ³⁷ CI, ⁴³ Ca ¹⁶ O ¹ H			
⁶¹ Ni	⁴⁴ Ca ¹⁶ O ¹ H, ³⁸ Ar ²³ Na, ²³ Na ³⁷ Cl ¹ H			
⁶³ Cu	⁴⁰ Ar ²³ Na, ⁴⁰ Ca ²³ Na?			
⁶⁵ Cu	⁴⁰ Ar ²³ Na, ³² S ³³ S			
⁶⁴ Zn	⁶⁴ Ni, ⁴⁴ Ca ¹⁸ O, ³² S ³² S, ³² S ¹⁶ O ₂			
⁶⁶ Zn	⁶⁴ Ni, ⁴⁴ Ca ¹⁸ O, ³⁴ S ¹⁶ O2	³² S ³⁴ S		
⁶⁷ Zn	³⁵ Cl ¹⁶ O ₂			
⁶⁸ Zn	³⁵ Cl ¹⁶ O ¹⁷ O	³⁴ S ³⁴ S		
⁷⁵ As		⁴⁰ Ar ³⁵ Cl, ⁴⁰ Ca ³⁵ Cl		
¹¹¹ Cd				
¹¹⁸ Sn				
²⁰⁰ Hg				
²⁰⁷ Pb				

Studiedag Elementanalyse KVCV 25.10.2007

Confidential

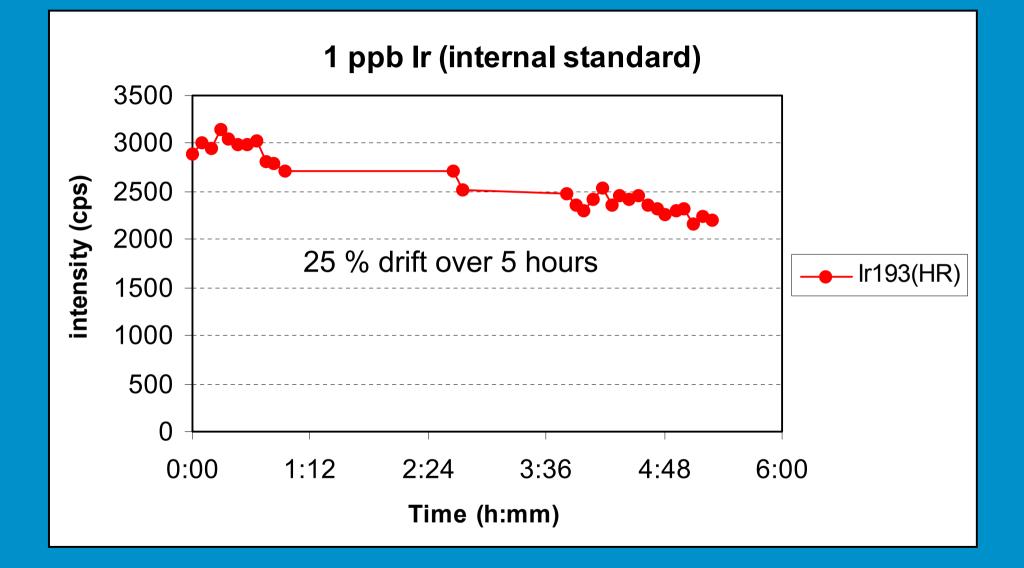

Interferences:

e.g. ⁷⁵As interfered in a 2.7 g CaCl2 + NaCl solution by


⁴⁰Ar³⁵CI R = 7773 ⁴⁰Ca³⁵CI R = 7613 \rightarrow Measured in high resolution mode (R > 10000)

⁷⁵As 100 ppt in High Res mode

Calibration by stand. addition for ⁷⁵As (Ir as int.st.)

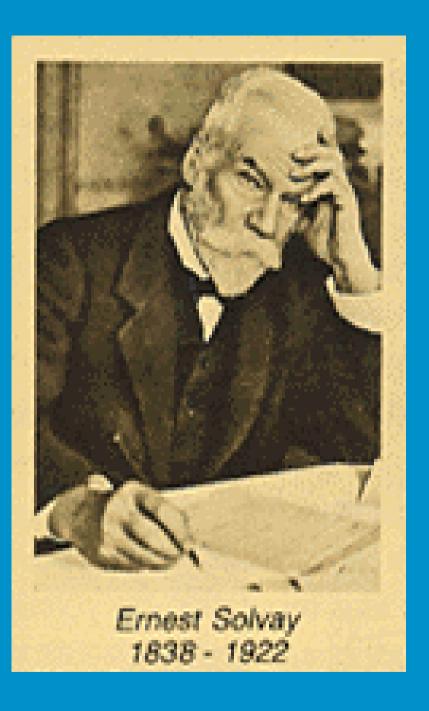

SOLVAY

Studiedag Elementanalyse KVCV 25.10.2007

Confidential

Signal drift in approx. 2.7 g/I CaCl2 + NaCl :

Studiedag Elementanalyse KVCV 25.10.2007


SOLVAY

Confidential

SOLVAY Studiedag Elementanalyse KVCV 25.10.2007

Confidential

a Passion for Progress®

SOLVAY

Studiedag Elementanalyse KVCV 25.10.2007

Confidential