

Column Optimization and Chemiluminescence Detector Enhancements for Improved Sulfur Analysis

KVCV – GC studiedag

Remko van Loon GC & GCMS product specialist

October 12, 2017

Why so much focus on Sulfur analysis?

Sulfur compounds

- corrosive to equipment, pipe lines, reactors
- inhibit or destroy catalysts employed in downstream processing
- undesirable odors or off-flavour to products
- pollutes the air (fuels)

Analytical challenges:

- Low levels often require maximum sensitivity
- Matrix interference from the hydrocarbons present
- Highly reactive and polar molecules

Importance of Sulfur analysis

- Environmental air monitoring (e.g. paper plant odors)
- Beverage grade CO2
- Alcoholic beverages, beer/wine/whisky/cognac
- Non alcoholic beverages, flavors/aroma's
- Fragrances
- Breath analysis, diagnostic biomarkers

Hydrocarbon Processing Industry

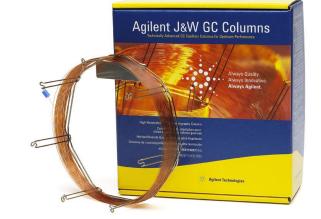
GC Columns for Sulfurs

PoraPLOT Q / HP-PLOT Q (PT) Low boiling sulfurs, H₂S absorption <100ppm

100% PDMS, CP-Sil 5 CB Sulfur, 1 > df < 5 μ m

poor matrix selectivity, SCD fouling

SilicaPLOT, GasPro


Low SCD fouling, No higher boiling sulfurs

Select for Low Sulfur

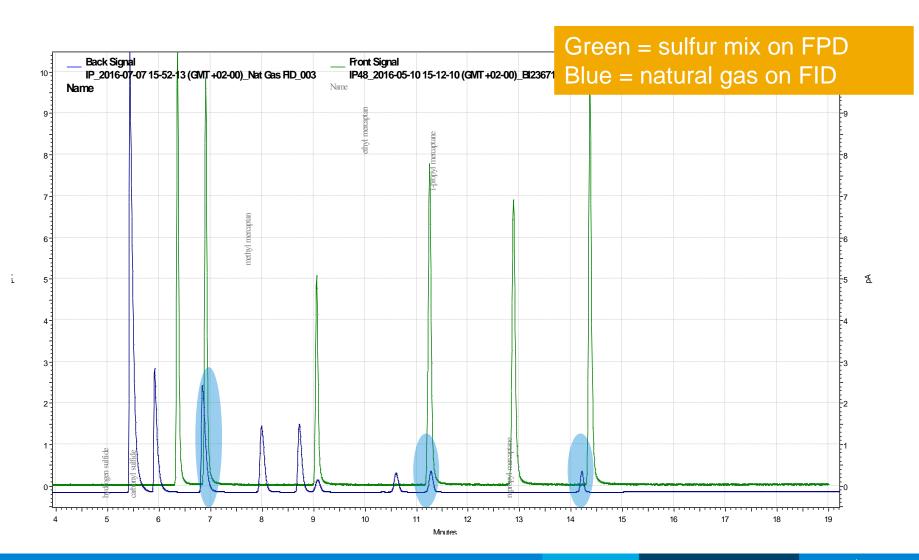
Excellent recovery < 10 ppb Limited Max T, Prone to SCD fouling at high temperature

DB-Sulfur SCD

Excellent recovery < 10 ppb Wide matrix range, Low SCD fouling

What detectors can we use for Sulfur?

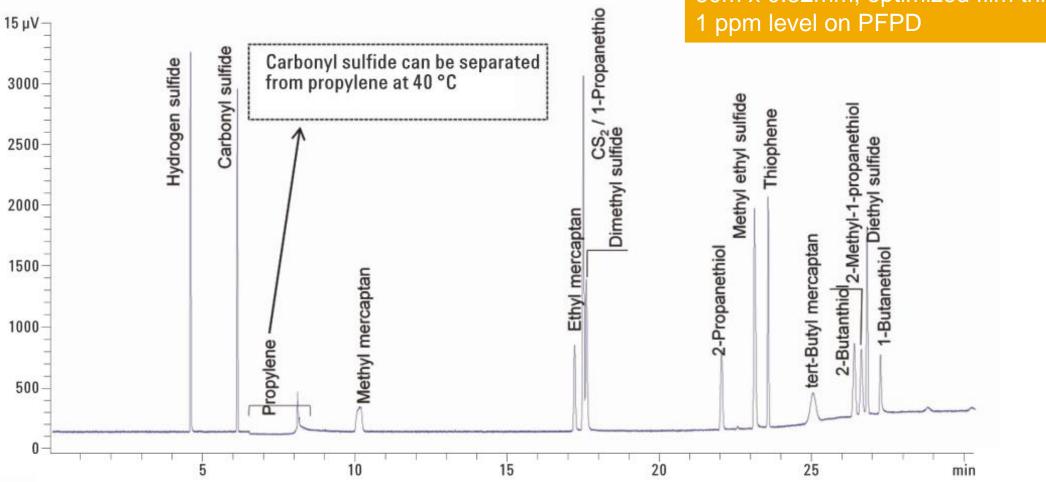
	FPD+	PFPD	SCD	
MDL spec for sulfur	2.5 pg/sec	1 pg/sec	0.5 pg/sec	
Dynamic range	10 ³	10 ³	10 ⁵ , linear	
Quenching	Yes	Yes	No	
Equimolar response	Quadratic response	Yes	Yes	
Packed column compatible	Yes	No, 1 ml/min	Yes	
Other elements	P, Sn	Р	Ν	
Relative cost	\$	\$\$	\$\$\$	



Flame Photometric Detector

Signal quenching

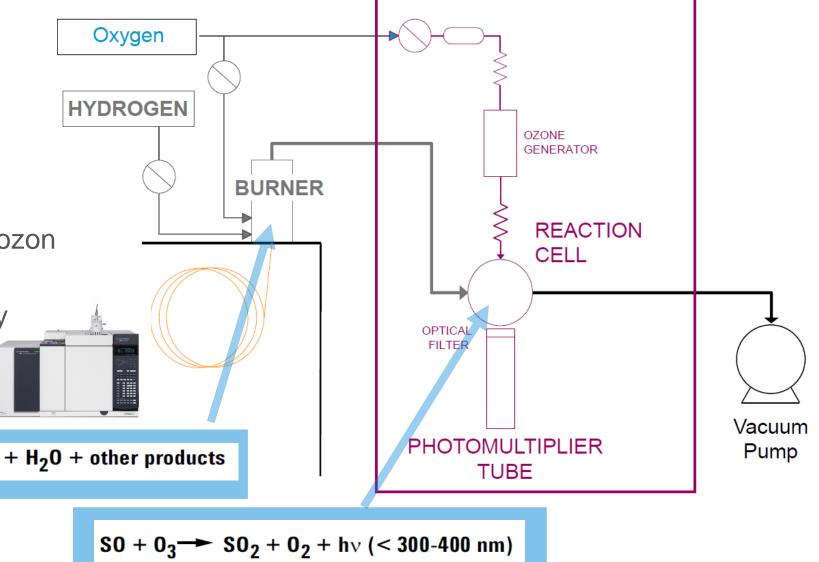
Co-elution of Sulfur compounds and high concentration matrix


Potential signal quenching

Select for Low Sulfur

Column optimized for propylene matrix

Select for Low Sulfur 60m x 0.32mm; optimized film thickness 1 ppm level on PFPD


Sulfur Chemiluminesence Detector

Chemically transforming of sulfur compounds

- Combustion in plasma (S to SO)
- Followed by reaction with ozon (SO to SO2*)
- Emitted light is detected by photo multiplier tube

Sulfur compound (analyte) \rightarrow S0 + H₂0 + other products

Sulfur Chemiluminesence Detector Principle of Operation

Reducing complexity improves uptime readiness

Pathway connections Reduced ~ 40%

Significantly decreasing the number of potential leak points compared to model 355.

Burner components Reduced ~ 50%

Making the inner ceramic tube easier to replace. 355 8355

Inner tube change time **Reduced** ~ 92%

Change the inner ceramic tube in as little as 10 minutes, as opposed to 2 hours.

System Integration

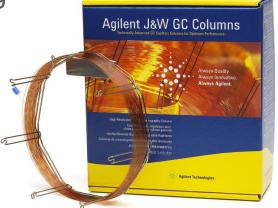
Hardware Integration

- Intergrate version (7890 GC) support all parameters on GC front panel
- Standalone version for old/third party GC's
- FID / SCD combi poissble

Software Integration

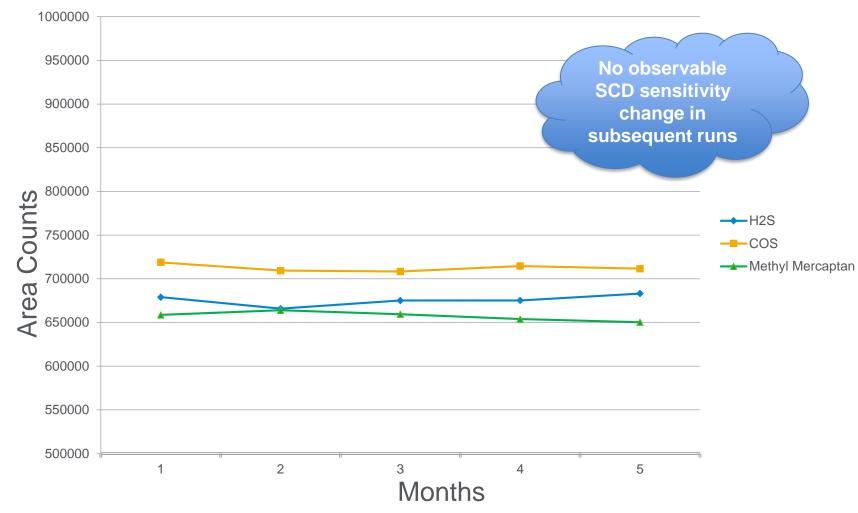
- Full dynamic range data (integrated version only)
- Support all parameters in CDS
 - ✓ Gas Flows
 - ✓ Temperature
 - ✓ Pressure

Actual 250 °C 900 °C	Subtract from Signal: (Nothing) Column Compensation Curve #1		
900 °C	Column Compensation Curve #1		
	 Column Compensation Curve #1 Column Compensation Curve #2 		
-14.9 °C			
-1.4 mL/min			
3 mL/min			
8 mL/min			
40 mL/min			
85.7 Torr			
-2 p A			
	-1 4 mL/min 3 mL/min 8 mL/min 40 mL/min 85.7 Torr		

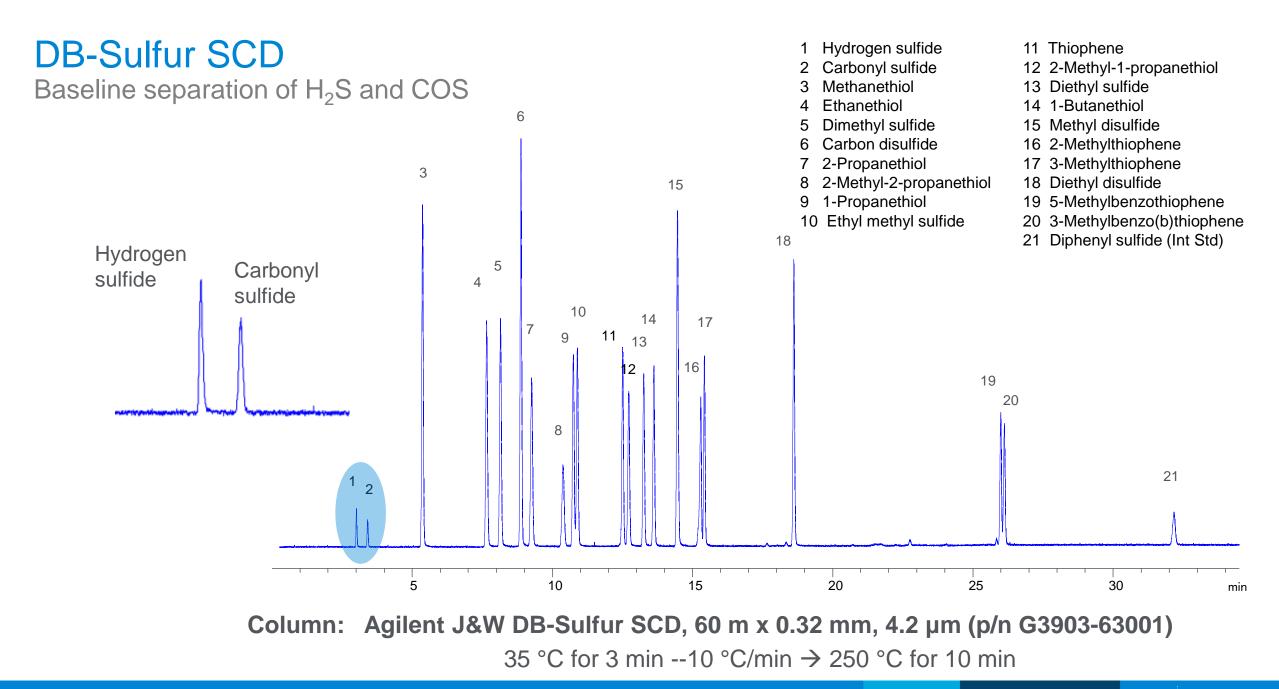

New optimized low polarity column with low bleed and exceptional inertness to sulfur even at trace levels

Developed with Dow Chemical and other leading companies

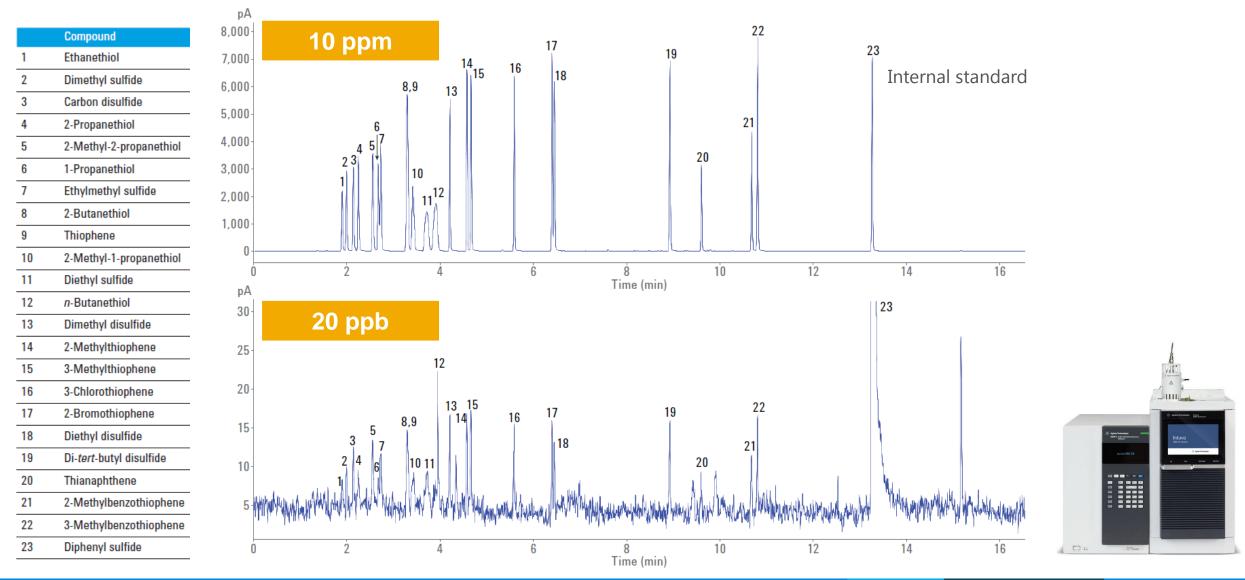
Excellent for a broad range of sulfur compounds from light sulfur gasses to sulfur containing hydrocarbons out to C24


Optimized for the lowest possible contribution to SCD reaction tube fouling

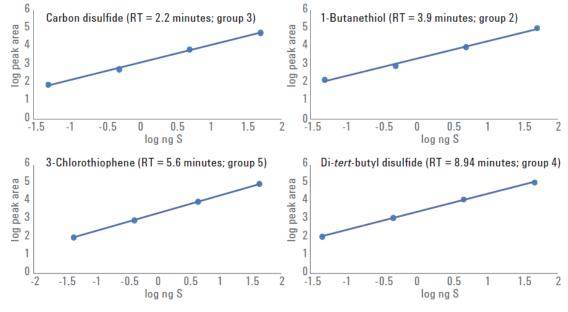
Part Number	Description	Temperature limits
G3903-63001	DB-Sulfur SCD 60m, 0.32mm, 4.2um	250°/270°C
G3903-63002	DB-Sulfur SCD 40m, 0.32mm, 0.75um	270°/290°C
G3903-63003	DB-Sulfur SCD 70m, 0.53mm, 4.3um	250°/270°C
G3903-63004	DB-Sulfur SCD 40m, 0.32mm, 3um	250°/270°C



Long Term SCD Performance with DB-Sulfur SCD


Data courtesy of Jim Luong, Ronda Gras, Myron Hawryluk of Dow Chemical Canada

Sulfur Compounds Analysis Intuvo GC / SCD

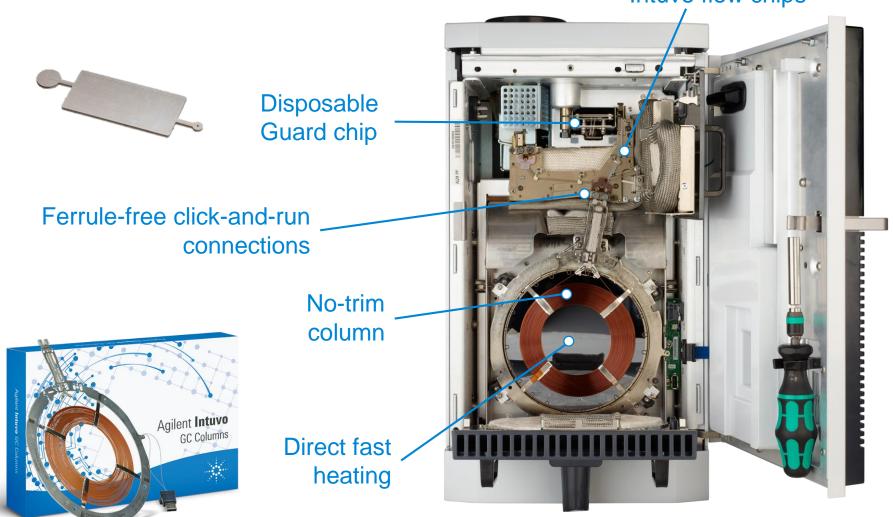


Sulfur Compounds Analysis Intuvo GC with SCD

Repeatability (RSD%) and linearitity

Analyte	0.1 ppm (%)	1 ppm (%)	10 ppm (%)	100 ppm (%)	R ²
Ethanethiol	8.5	4.6	5.4	3.9	0.998
Dimethyl sulfide	5.5	5.9	6.9	4.1	0.997
Carbon disulfide	3.9	6.8	4.0	7.3	0.997
2-Propanethiol	3.1	3.6	3.9	3.7	0.999
2-Methyl-2-propanethiol	4.3	2.6	1.6	1.0	0.999
1-Propanethiol	6.7	2.2	5.3	2.9	0.999
Ethylmethyl sulfide	3.8	5.3	5.1	3.0	0.999
2-Butanethiol	3.1	4.2	2.4	3.8	0.999
Thiophene	3.9	3.6	4.5	4.0	0.999
2-Methyl-1-propanethiol	3.0	3.2	1.4	1.1	0.999
Diethyl sulfide	6.9	2.6	3.7	1.9	0.999
n-Butanethiol	4.0	3.7	3.7	1.9	0.994
Dimethyl disulfide	3.3	3.5	2.2	4.0	0.999
2-Methylthiophene	2.8	3.5	2.7	1.7	0.999
3-Methylthiophene	4.4	3.3	1.5	0.9	0.999
3-Chlorothiophene	4.7	3.2	1.2	0.8	0.999
2-Bromothiophene	2.8	0.9	2.30	0.5	0.999
Diethyl disulfide	3.1	1.20	1.60	0.56	0.999
Di-tert-butyl disulfide	2.5	1.9	0.66	0.74	0.999
Thianaphthene	4.7	0.7	1.2	0.54	0.999
2-Methylbenzothiophene	2.7	1.4	1.20	0.6	0.998
3-methylbenzothiophene	1.5	2.4	0.6	0.2	0.999

Calibration plots, 5 data points for each calibration

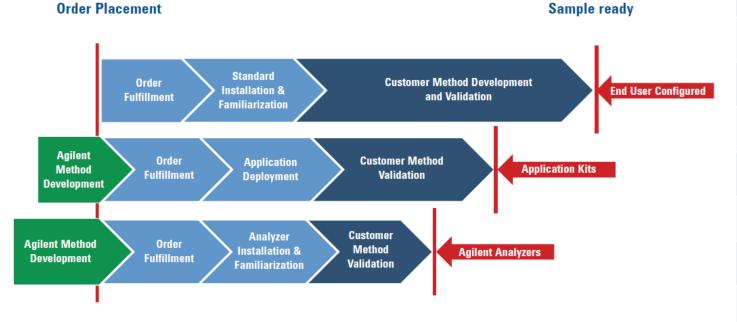


Agilent

Innovating a New Path to GC Productivity

Intuvo GC - A whole new way to GC

Modular Intuvo flow chips



GC and GC-MS analyzers

- Pre-configured system
- Factory tested
- Shipped with method, manual and check-out mix

Analyzers and Application Kits reduce your method development time

Sulfur analyzers

Three Channel Fast RGA + H2S with Five Valves

Extended RGA with high H2 and H2S 100ppm to 5%

Analyzer for sulfur in liq Nat Gas and LPG

Sulfur Comp. in Nat. Gas or gas fuels by GC-SCD ASTM D5504

Sulfur Comp. in Light Petroleum Liquids by GC-SCD ASTM D5623

Sulfur Comp. in Gas or Liquids by chemiluminescence as per ASTM D5504, D5623 and UOP 791

Parallel splitter analyzer for liquefied and gas samples through SCD-FID

Parallel splitter analyzer for gaseous samples through SCD-FID

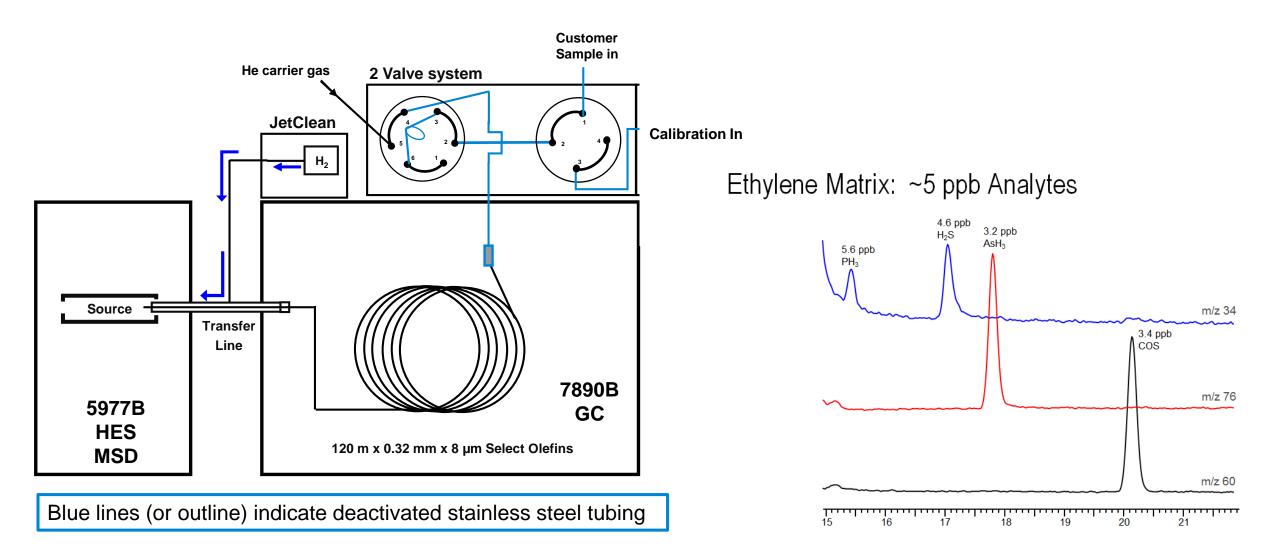
NGA Analyzer with PFPD Sulfur Channel

Light sulfur species and light hydrocarbons in fuels or heavy matrices with CFT backflush and FID-SCD

Fast Refinery Gas Analyzer (RGA) with hydrogen sulfide and oxygen

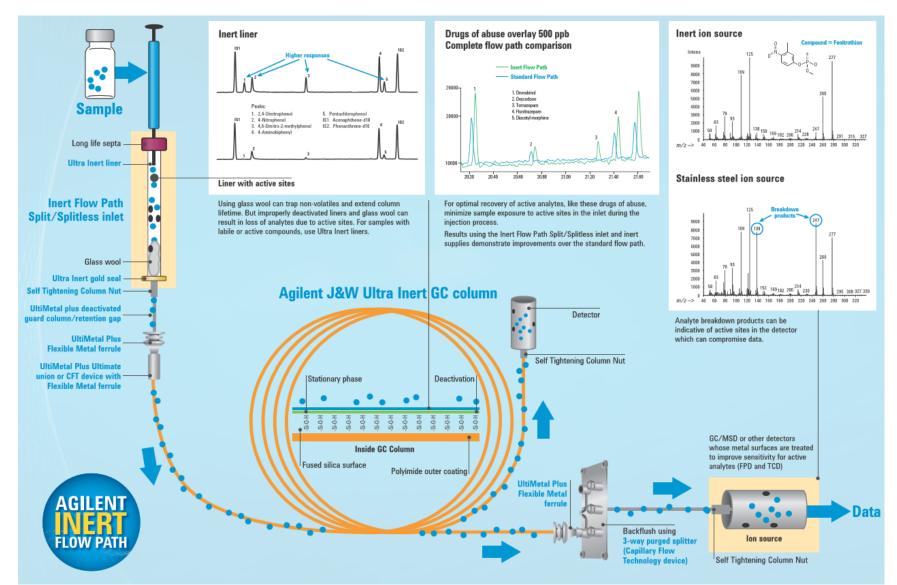
Dual Channel trace sulfur analyzer for Natural Gas and Fuel Gas streams

Dual Channel trace sulfur analyzer for Ethylene, Propylene and C4 streams


Dual channel Natural Gas Analyzer with H2, He and % level H2S capability

Analyzer for ppm traces of tiophene in benzene by Deans Switch (2-D GC)

GCMS single quadrupole analyzer for arsine, phosphine, hydrogen sulfide and carbonyl sulfide



GC-MS analyzers Arsine, phosphine, H2S & COS in ethylene and propylene

Inert GC Flow Path

Inert GC flow path

- Sample introduction
- Liner/gold seal
- Ultra Inert columns
- Capillary flow technology / connectors
- Deactivated injector/ detector weldment
- Gas clean filters

Sulfur Analysis

To summarize

- Multiple detectors for sulfur detection
 - Required sensitivity
 - Sample type/matrix
- Optimized columns available
 - DB-Sulfur SCD low bleed, inert and minimizes detector fouling
 - J&W Select Low Sulfur for Propylene streams
- Inert flow path
 - Prevent adsorption of active compounds
- Sulfur Chemiluminesense Detector
 - Enhanced detector design robustness and simplified maintanence
 - Avialable for 7890 GC, Intuvo GC and standalone version for other GC's

