

## Determination of organic contaminants in water by modern GCMS: - Standard vs fast - EI and NCI - Two columns – one MS Dr. Hans-Ulrich Baier

**Product Specialist GC&GCMS** 

Shimadzu Deutschland GmbH

SHIMADZU Solutions for Science since 1875



# Modern GCMS

- Sensitivity
- Rapid answers
- Ease of use
- Flexibility
- Includes sample prep



• GCMS-QP2010







- 1.) Different sample introduction systems
- PTV/SPL combinations
- Pyrolysis/SPL

2) Different Columns for screening many different analytes

### Two column – one MS setup



## **Dual Column - Pesticides**



9.0

9.5

10.0

10.5

11.0

0.0

7.5

8.0

8.5

# **Analytical Conditions**

Chromatography

| Rtx-5MS<br>SPLITLESS | <ul> <li><b>GCMS QP2010</b></li> <li>Column</li> <li>Injection Mode</li> <li>Injection Temp.</li> <li>Column Oven Temp.</li> <li>Column Oven Temp.</li> <li>Carrier Gas</li> <li>Flow Control Mode</li> <li>Ion Source Temp.</li> <li>Interface Temp.</li> <li>Scan Range</li> <li>Interval</li> </ul> | <ul> <li>Rtx-5MS [30m× 0.25mm I.D. df=0.25um]</li> <li>Splitless</li> <li>250 ?</li> <li>35? (1min)? (20? /min)? 140? ? (10? /min)? 280? (3min)</li> <li>He</li> <li>Linear Velocity (48.6 cm/sec)</li> <li>200?</li> <li>250?</li> <li>m/z 70~ 360</li> <li>0.5sec</li> </ul> |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rtx-5MS<br>PTV       | ? <u>GCMS QP2010</u><br>Column<br>Injection Mode<br>Injection Temp.<br>Column Oven Temp.<br>Carrier Gas                                                                                                                                                                                                | : Rtx-5MS [30m× 0.25mm I.D. df=0.25um]<br>: PTV<br>: 30? (0.5min)? (100? /min)? 280? (17min)<br>: 35? (1min)? (20? /min)? 140? ? (10? /min)? 280? (3min)<br>: He                                                                                                               |

: 200?

: 250?

: 0.5sec

Scan Range : m/z75~ 360

Flow Control Mode Ion Source Temp.

Interface Temp.

SCAN

Interval

: Linear Velocity (48.6 cm/sec)



Flexibility

## **Dual column setup:**

- 2 columns in 1 MS





**New Ion Source** 

GCMS QP-2010



# **C**olumn from I/F Magnets Co Filaments EI Source box





# Dual Columns – Flexibility

- Allergens:
- Method based on SCAN instead of SIM
  - Full Scan Information and confirmation via second column.
  - H. Leijs et al: J. Agric.
     Food Chem. 2005,53,6487



| ID | Name                                         | m/z    |
|----|----------------------------------------------|--------|
| 1  | 2,3-DICHLOROTOLUENE (Cp Restek rtx-5MS, low) | 125.00 |
| 2  | 2,3-DICHLOROTOLUENE (Cp Sil 24 CB, low)      | 125.00 |
| 3  | BENZYL ALCOHOL (Cp Restek rtx-5MS)           | 108.00 |
| 4  | BENZYL ALCOHOL (Cp Sil 24 CB)                | 108.00 |
| 5  | LIMONENE (Cp Restek rtx-5MS)                 | 68.00  |
| 6  | LIMONENE (Cp Sil 24 CB)                      | 68.00  |
| 7  | LINALOOL (Cp Restek rtx-5MS)                 | 71.00  |
| 8  | LINALOOL (Cp Sil 24 CB)                      | 71.00  |
| 9  | METHYL HEPTIN CARBONATE (Cp Restek rtx-5MS)  | 123.00 |
| 10 | METHYL HEPTIN CARBONATE (Cp Sil 24 CB)       | 123.00 |
| 11 | CITRONELLOL (Cp Restek rtx-5MS)              | 81.00  |
| 12 | CITRONELLOL (Cp Sil 24 CB)                   | 81.00  |
| 13 | NERAL (Cp Restek rtx-5MS)                    | 69.00  |
| 14 | NERAL 84 (Cp Restek rtx-5MS)                 | 84.00  |
| 15 | NERAL (Cp Sil 24 CB)                         | 69.00  |
| 16 | NERAL 84 (Cp Sil 24 CB)                      | 84.00  |
| 17 | CINNAMALDEHYDE (Cp Restek rtx-5MS)           | 131.00 |
| 18 | CINNAMALDEHYDE (Cp Sil 24 CB)                | 131.00 |
| 19 | GERANIOL (Cp Restek rtx-5MS)                 | 93.00  |
| 20 | GERANIOL (Cp Sil 24 CB)                      | 93.00  |
| 21 | GERANIAL (Cp Restek rtx-5MS)                 | 69.00  |
| 22 | GERANIAL 84 (Cp Restek rtx-5MS)              | 84.00  |
| 23 | GERANIAL (Cp Sil 24 CB)                      | 69.00  |
| 24 | GERANIAL 84 (Cp Sil 24 CB)                   | 84.00  |
| 25 | ANISIC ALCOHOL (Cp Restek rtx-5MS)           | 138.00 |
| 26 | ANISIC ALCOHOL (Cp Sil 24 CB)                | 138.00 |
| 27 | HYDROXY CITRONELLAL (Cp Restek rtx-5MS)      | 59.00  |
| 28 | HYDROXY CITRONELLAL (Cp Sil 24 CB)           | 59.00  |
| 29 | CINNAMYL ALCOHOL (Cp Restek rtx-5MS)         | 134.00 |
| 30 | CINNAMYL ALCOHOL (Cp Sil 24 CB)              | 134.00 |
| 31 | EUGENOL (Cp Restek rtx-5MS)                  | 164.00 |
| 30 | ELIGENOL (Co SIL24 CR)                       | 164.00 |





## Matrix Water

#### Chromatography

### GCMS analysis according to European Drinking Water Regulations

- volatile hydrocarbons (VOC ´s)
- polycyclic aromatic hydrocarbons (PAH´s)
- benzene, toluene und xylene (BTX)
- pesticides and herbicides







# **Dual Column-Drinking Water**





## Volatile Hydrocarbons (VOC´s) - HS





## Benzene, Toluene and Xylene

Benzene:







# AOC 5000

• SPME:

Variable Needle Penetration Depths for Adsorption in Liquid or Head Space



#### Adsorption Vial in Agitator

# Desorption in Injector



# VOCs-HS/SPME (Carboxen)





Solutions for Science



## VOCs-HS/SPME (Carboxen)







## Line 2: PCBs

• 100 ng/L



**SHIMADZU** Solutions for Science

PTV Injection split 50:1



## **Triazine Pesticides**

#### Procedure:

Determination of selected Nitrogen- and Phosphorous compounds, gas chromatographic procedure (DIN EN ISO 10695)

- solid phase extraction (Laborintern: HR-P (3ml/200mg) MN)
- Internal Standards used

Limit according to drinking water regulation, pesticides:

- ➤ sum concentration < 500 ng/l</p>
- single components < 100 ng/l</p>





## **Triazine Pesticides**

Atrazine

10 level calibration curve:

calibration range:15-1500 ng/l

➢ limit: 100 ng/l

concentration determined: 16.4 ng/l





# Reliability

#### Real sample (3 times repetitive measurement)

|                       | Real sar  | nple (3 repe       | titions)        | (x10,000) PeakMax : 48,868<br>7.0-1200.05<br>215.05 | (x100,000) 295,630<br>172.05<br>2 c 187.05 |
|-----------------------|-----------|--------------------|-----------------|-----------------------------------------------------|--------------------------------------------|
| Triazine              | MW (µg∕I) | Std.dev.<br>(µg/I) | Std.dev.<br>(%) | 6.0-173.05                                          | 3.0 174.05                                 |
| Atrazine              | 0,121     | 0,002              | 1,7             | 5.0<br>4.0<br>3.0                                   | 2.5                                        |
|                       | MW (µg∕I) | Std.dev<br>(µg/I)  | Std.dev.<br>(%) | 2.0 *** ****                                        |                                            |
| Atrazine-<br>desethyl | 0,292     | 0,013              | 4,4             | 1.0                                                 | 0.5                                        |
|                       |           |                    |                 | Atrazine peak<br>in real sample                     | Atrazine-desethyl peak<br>in real sample   |





### Negative chemical Ionization NCI





## **Comparison of Sensitivity NCI/EI**

Chromatography

(x10.000)

157.00

185.00

1.25

1.00

0.75

0.50

0.25

#### $EPN(0.05\mu g/ml$ 10.000 1.75 138.00 EI **NCI** 1.50 -1.25 1.00 0.75 0.50 0.25 0.00 -18.0 18.5

Higher sensitivity in NCI

#### Bifenox( $0.025\mu$ g/ml)



#### Cyanazin(0.01µ g/ml)





#### Pendimethalin $(0.025\mu \text{ g/ml})$



## **Comparison of Sensitivity NCI/EI**

Chromat

Simliar sensitivity

#### Diazinon(0.05µ g/ml)





#### Bifenthrin(0.025µ g/ml)



#### Higher sensitivity in EI

#### Etrimfos(0.005µ g/ml





#### Methoprene(1.0µ g/ml)





#### **Advantages of NCI**





## Combined NCI/EI Library available



SHIMADZU Solutions for Science

#### Comparison of the sensitivities in EI and NCI

#### Higher sensitivity in NCI mode

#### **Higher sensitivity in EI mode**

| >10 times      | 2-10             | times              | Eq              | uality            |                  | >10 ti            | mes             |
|----------------|------------------|--------------------|-----------------|-------------------|------------------|-------------------|-----------------|
| Bifenox        | Dichlofluanid    | Dicofol bunkaibutu | p,p'-DDT        | Aldrin            | Fosthiazate      | Chlofentezine deg | Mepronil        |
| Fenvalerate    | Fenalimol        | malathion          | Dimethoate      | Thiobencarb       | Acephate         | Methamidophos     | Propiconazol    |
| Chlorfenapyr   | Pendimethalin    | Parathion          | deltaLindane    | Permethrin        | Terbacil         | EPTC              | Lenacil         |
| Cyfluthrin     | Dieldrin         | Dimethylvinphos    | Cafenstrole     | Pyributicarb      | Pyraclofos       | Propamocarb       | Tebuconazole    |
| Pyrethrin-2    | Edifenphos       | Pyrifenox-Z        | Fluvalinate-1   | p,p'-DDD          | Penconazol       | Chlorpropham      | Etoxazole       |
| MEP            | Tefluthrin       | Parathion-methyl   | Pyrifenox-E     | Chlopyrifos       | Uniconazolep     | Terbufos          | Tebufenpyrad    |
| EPN            | Cypermethrin     | Kresoxim-methyl    | Diflufenican    | Bitertanol        | Fensulfothion    | Benfuresate       | Pyriproxyfen    |
| Fenpropathrin  | Thifluzamide     | Folpet             | Hxaconazole     | lsofenphos        | Cyhalofop-buthyl | Dimethenamid      | Pyrimidifen     |
| Acrinthrin     | Acetamiprid      | Cyanazine          | Thiometon       | Quinalphos        | Butachlor        | Alachlor          | Mefenacet       |
| Trifluralin    | PAP ; Phenthoate | Cadusafos          | Diazinon        | p,p'-DDE          |                  | Metolachlor       | Triadimenol     |
| Phosalone      | Pyrethrin-1      | Tolclofos methyl   | Prothiofos      | Pirimiphos-methyl |                  | Diethofencarb     | Etrimfos        |
| Cyhalothrin    | Endrin           | Pretilachlor       | Difenoconazole  | o,p'-DDT          |                  | Fenthion          | Chlorobenzilate |
| ß-CVP          | Deltamethrin     | Malathion          | Pyridaben       | Halfenprox        |                  | Fludioxonil       | Esprocarb       |
| Flucythrinate  | betaBHC          | Captafol           | Teraconazole    | Ethoprophos       |                  | Methoprene        | Thenylchlor     |
| Butamifos      | alphaBHC         | Flutolanil         | Chinomethionate | Dichlorvos        |                  | Paclobutrazol     | Tricyclazole    |
| gammaBHC       |                  |                    | Bifenthrin      |                   |                  | Flusilazole       | lsoprocarb      |
| Captan         |                  |                    | Inabenfide      |                   |                  | Cyproconazole     |                 |
| Imibenconazole |                  |                    | Myclobutanil    |                   |                  |                   |                 |



## OCP's with fast NCI/GCMS







## STD vs fast

## Phospor Pesticides: GC-FPD Splitless analysis



SHIMADZU Solutions for Science



## Transfer to fast: EI



RTX-5: 30m, 0.25 mm, 0.25 μm He 35 cm/sec, splitless 1 μl, HPI 250 kPa

| 3.00<br>2.75<br>2.50<br>2.25<br>2.00<br>1.75<br>1.50<br>1.25<br>1.00<br>0.75<br>0.50<br>0.25<br>0.00 |      | Methomy1 |      | Diazinon | Captan<br>Captan | Carboxin | Endosufan sulfate<br>Piperonyl butoxide<br>Potasan |
|------------------------------------------------------------------------------------------------------|------|----------|------|----------|------------------|----------|----------------------------------------------------|
|                                                                                                      | 10.0 | 12.5     | 15.0 | 17.5     | 20               | 0.0      | 22.5                                               |
|                                                                                                      |      |          |      |          |                  |          |                                                    |

olutions for Science



RTX-5: 10m, 0.15 mm, 0.15 μm He 35 cm/sec, splitless 1 μl, HPI=450kPa

| 🏮 Sar                  | mpler 🔀 👩 GC                     | 🗧 MS 🛛 De                 | escription                                                        |                                           |                       |                       |                      |            |          |  |  |  |  |
|------------------------|----------------------------------|---------------------------|-------------------------------------------------------------------|-------------------------------------------|-----------------------|-----------------------|----------------------|------------|----------|--|--|--|--|
| GCMS                   | -QP2010                          |                           |                                                                   |                                           |                       |                       |                      |            |          |  |  |  |  |
| lon So                 | urce Temp. :                     | 230                       | *C                                                                |                                           |                       |                       |                      |            |          |  |  |  |  |
| Interfac               | ce <u>T</u> emp. :               | 290                       | *C Detector Voltage : € Relative to the Turning Result € Absolute |                                           |                       |                       |                      |            |          |  |  |  |  |
| Solvent Cut Time : 2.5 |                                  |                           | min                                                               |                                           | 0.4                   | 0.4 KV                |                      |            |          |  |  |  |  |
| <u>M</u> icro S        | Scan Width :                     | 0                         | u T <u>h</u> re                                                   | eshold :                                  | 1000                  |                       |                      |            |          |  |  |  |  |
|                        |                                  |                           |                                                                   | D                                         |                       | 20 min                |                      |            |          |  |  |  |  |
| 🗖 Use                  | MS Program                       | Set                       | GC                                                                | Program Time                              | 13 V.4                | 10 100                |                      |            |          |  |  |  |  |
|                        | MS Program                       | End Time<br>(min)         | GC<br>Acq.<br>Mode                                                | Interval<br>(sec)                         | Scan<br>Speed         | Start<br>m/z          | End<br>m/z           | Ch1<br>m/z | Ch<br>m/ |  |  |  |  |
|                        | MS Program Start Time (min) 3.00 | End Time<br>(min)<br>7.20 | GC<br>Acq.<br>Mode<br>Scan                                        | Program Time<br>Interval<br>(sec)<br>0.08 | Scan<br>Speed<br>5000 | Start<br>m/z<br>50.00 | End<br>m/z<br>400.00 | Ch1<br>m/z | Ch<br>m/ |  |  |  |  |



Speed gain with better resolution » 4

SHIMADZU Solutions for Science



# Fast -Sample Transfer

#### Sample transfer in an SPL injector





# Fast -Sample Transfer

#### Sample transfer in an SPL injector





## Fast GCMS-Detector

#### **Users need for fast GCMS**

#### 1. - Data Aquisition rate (Sampling

### Frequency)

2. - Mass Range (Scan speed)



# GCMS-QP2010

Chromatography

#### Speed and sampling frequency:



SHIMADZU Solutions for Science

m/z



## Fast GCMS Analysis



SHIMADZU Solutions for Science



## Fast GCMS NCI Scan







#### What about stability in fast GCMS?





## EPA 625 ~100 ppb each



**SHIMADZU** Solutions for Science

# Stability-fast (~100 ppb each)

#### 🚰 Adobe Acrobat Professional - [EPA625 repro 20 runs.pdf] \_ & × \_ 8 × Datei Bearbeiten Anzeige Dokument Werkzeuge Erweitert Fenster Hilfe 😤 Öffnen 陰 🗐 Speichern 🚔 Drucken 🤮 E-Mail 🏢 Suchen 🛛 🎀 PDF erstellen 🔹 💾 Überprüfen und kommentieren 🍷 🤗 Schützen 🔹 🖊 Unterschreiben 🔹 限 Erweiterte Bearbeitung 🔹 🔹 💿 📑 🚰 🔚 Verfahren... 🔹 🔖 👊 🐐 🍯 🔳 🔹 🖽 🔹 🗊 🖑 T Textauswahl 🔹 💽 🔹 🔹 📄 📄 🕒 125% EPA625 Mix Raw Area Reproducibility Lesezeichen 3500000 3000000 Unterschriften ---------Bis(2-chloroethyl) ether %RSD 2500000 Analyte - Benzene, nitro-Bis(2-chloroethyl) ether 2.80 Phenol, 2,6-dimethyl-3 14 Benzene, nitro-Naphthalene Phenol, 2,6-dimethyl-3.15 2000000 2.51 Naphthalene Naphthalene. 1-chloro-Naphthalene, 1-methyl-3 24 Ar 1500000 Naphthalene, 1-chloro-3.70 Ebenen -Acenaphthene 3.51 Acenaphthene - Phenanthrene Phenanthrene 3.74 Pyrene Pyrene 3.53 p-Terphenvl-d14 p-Terphenyl-d14 3.07 Benzyl butyl phthalate eiten 1000000 Benzyl butyl phthalate 2.85 Benz(a)anthracene Benz[a]anthracene 6.67 Sei 500000 2 3 5 10 11 12 13 14 15 16 17 18 19 20 1 7 8 Run Number [Result](Area) **ID** Compound Name Data1 Area Data2 Area Data3 Area Data4 Area Data5 Area Data6 Area Data6 Area Data8 Area Data9 Area Data10 Area Data11 Area Data12 Area Data13 Area Data13 Area Data14 Area Data16 Area Data16 Area Data18 Area Data19 Area Data20 Area %RSD 1084879 1 Bis(2-chloroethyl) ether 1139146 1182013 1113967 1140150 1081284 1156212 1157437 1141603 1097458 1134800 1093910 1099428 1073088 1133019 1181439 1135308 1149493 1110825 1125086 2.800055 1000100 1075713

|             | 12 Benz[a]anthracene             | 6.458            | 6.450167 | 6.448833 | 6.4505   | 6.4545   | 6.451833       | 6.456    | 6.456167 | 6.453167         | 6.454333  | 6.45           | 6.450167  | 6.451167          | 6.4515    | 6.452     | 6.453167  | 6.453167  | 6.450333          | 6.450667  | 6.448333 0.039961                    |
|-------------|----------------------------------|------------------|----------|----------|----------|----------|----------------|----------|----------|------------------|-----------|----------------|-----------|-------------------|-----------|-----------|-----------|-----------|-------------------|-----------|--------------------------------------|
|             | 11 Benzyl butyl phthalate        | 5.971833         | 5.969167 | 5.967333 | 5.966833 | 5.9705   | 5.967333       | 5.9715   | 5.969    | 5.97             | 5.970333  | 5.969          | 5.972667  | 5.970667          | 5.970833  | 5.972667  | 5.9715    | 5.968667  | 5.967167          | 5.968833  | 5.970833 0.030218                    |
|             | 10 p.TembeovLd14                 | 5 707167         | 5.515333 | 5 703333 | 5 7045   | 5 705333 | 5 704333       | 5 705833 | 5 704333 | 5 704833         | 5 7045    | 5 704          | 5 705167  | 5 704833          | 5 704667  | 5 706167  | 5 706167  | 5 704833  | 5 7045            | 5 704667  | 5,702167 0.028046                    |
|             | o Frienanniene<br>9 Duropo       | 4.91<br>5.521167 | 4.50/10/ | 5 516833 | 4.509333 | 4.505007 | 4.91<br>5.5105 | 4.9000   | 4.9000   | 4.91<br>5 510167 | 5 5 1 9 5 | 4.91<br>6.5166 | 4.9095    | 4.907<br>5.517667 | 4.500007  | 4.500007  | 4.9000    | 4.5005555 | 4.907<br>5.518667 | 4.500007  | 4.5075 0.023039<br>5.518667 0.026046 |
|             | 7 Acenaphulene<br>9 Decemptorene | 4.149            | 4.15     | 4.151107 | 4.149    | 4.151333 | 4.151167       | 4.15     | 4.150167 | 4.149            | 4.151167  | 4.152167       | 4.150667  | 4.151167          | 4.151333  | 4.101007  | 4.101007  | 4.1010    | 4.1515            | 4.100167  | 4.150107 0.023107                    |
|             | 7 Accorditions                   | 3.05/ 333        | 3.0030   | 3.034107 | 3.000    | 3.000    | 3.0000000      | 3.034007 | 4 160167 | 3.030107         | 3.034167  | 3.054333       | 3.053333  | 3.0030            | 3.052333  | 4 454667  | 3.033033  | J.0000000 | 3.000333          | 3.000     | 4.150167 0.032017                    |
|             | 5 Naphthalene, 1-methyl-         | 3.6065           | 3.603667 | 3.603667 | 3.604333 | 3.6045   | 3.003033       | 3.604667 | 3.6045   | 3,605            | 3.602333  | 3.0035         | 3.604667  | 3,6035            | 3.6045    | 3.605333  | 3.000     | 3.604833  | 3.605             | 3.605     | 3.605167 0.026125                    |
|             | 4 Naphthalene                    | 3.2655           | 3.264333 | 3.263833 | 3.263833 | 3.265167 | 3.265333       | 3.265833 | 3.2645   | 3.265833         | 3.264833  | 3.266167       | 3.265     | 3.263833          | 3.264     | 3.265333  | 3.265167  | 3.264833  | 3.265833          | 3.266333  | 3.265833 0.024531                    |
| 8           | 3 Phenol, 2,6-dimethyl-          | 3.086833         | 3.0865   | 3.085667 | 3.085167 | 3.0855   | 3.0855         | 3.085833 | 3.085167 | 3.086333         | 3.084833  | 3.084          | 3.083833  | 3.084833          | 3.084833  | 3.086     | 3.085333  | 3.086     | 3.085333          | 3.085167  | 3.085167 0.024365                    |
|             | 2 Benzene, nitro-                | 2.932333         | 2.931667 | 2.931833 | 2.931667 | 2.932833 | 2.930667       | 2.9315   | 2.929    | 2.930167         | 2.930333  | 2.930333       | 2.932167  | 2.931             | 2.928833  | 2.931333  | 2.930333  | 2.9315    | 2.931667          | 2.930833  | 2.934 0.041563                       |
|             | 1 Bis(2-chloroethyl) ether       | 2.527            | 2.525167 | 2.523667 | 2.526167 | 2.5235   | 2.527833       | 2.526    | 2.524    | 2.523            | 2.522667  | 2.524333       | 2.523333  | 2.524667          | 2.523833  | 2.525     | 2.523333  | 2.522333  | 2.525             | 2.526667  | 2.527833 0.066269                    |
| iD          | Compound Name                    | Data1 RT         | Data2 RT | Data3 RT | Data4 RT | Data5 RT | Data6 RT       | Data7 RT | Data8 RT | Data9 RT         | Data10 RT | Data11 RT      | Data12 RT | Data13 RT         | Data14 RT | Data15 RT | Data16 RT | Data17 RT | Data18 RT         | Data19 RT | Data20 RT %RSD                       |
| [Result](R] | nie beniejajaminiacione<br>N     | 1110100          | 1000002  | 1100000  | 1000001  | 1120100  | 1317.0100      | 1201200  | 1010020  | 1220010          | 1200100   | 1012101        | 1001000   | 1000012           | 1210010   | 1000070   | 1007077   | 10/2014   | 1100010           | 1000100   | 1000020 0.0071                       |
|             | 12 Benzíalanthracene             | 1448135          | 1505592  | 1406853  | 1386661  | 1428460  | 1473169        | 1264298  | 1370526  | 1220048          | 1295750   | 1312497        | 1381680   | 1365872           | 1273519   | 1536075   | 1357571   | 1372074   | 1186648           | 1386109   | 1305926 6.6671                       |
|             | 11 Benzyl bytyl ohtholate        | 986574           | 1043926  | 1042076  | 984518   | 1060118  | 1059539        | 1002950  | 980366   | 1034405          | 966497    | 1030872        | 977567    | 994969            | 1017076   | 1000966   | 1005566   | 1027150   | 1045406           | 993146    | 1039205 2.849091                     |
|             | 10 n-TembenyLd14                 | 3002355          | 2806976  | 2772407  | 2748027  | 2791826  | 2656789        | 2647677  | 2738546  | 2626883          | 2699311   | 2735666        | 2745378   | 2715154           | 2679470   | 2764430   | 2784463   | 2863471   | 2816936           | 28278/7   | 2731681 3.07/156                     |
|             | 9 Durono                         | 1419342          | 1384321  | 1452920  | 1377824  | 1304100  | 139/922        | 1402123  | 1322400  | 1375134          | 138/355   | 1/100860       | 1341290   | 1304309           | 1/06967   | 1290405   | 1438547   | 1383354   | 1364634           | 1455810   | 1490007 0.700004<br>1496655 3.534004 |
|             | 7 Acenaphinene                   | 1440242          | 1321123  | 1200902  | 1411606  | 120/000  | 1412126        | 1100234  | 122/01/  | 1220457          | 1240052   | 1277767        | 1209921   | 1264290           | 125/092   | 1207/05   | 1200095   | 1240339   | 1000220           | 1200007   | 1331505 3.512076                     |
|             | 6 Naphthalene, 1-chloro-         | 1138420          | 1064761  | 1065953  | 1081402  | 1042602  | 1009634        | 1073994  | 1068691  | 1042665          | 1060085   | 956554         | 1069941   | 1054127           | 1082008   | 1090521   | 1139115   | 10/1928   | 1085186           | 1038027   | 1056149 3.697509                     |
|             | 5 Naphthalene, 1-methyl-         | 1906481          | 18/1430  | 1812136  | 1/80/56  | 1887999  | 1793750        | 1807288  | 1882923  | 181/9/5          | 1779292   | 1/36/23        | 1734559   | 1806929           | 1910170   | 18/131/   | 1855120   | 1918/42   | 1791335           | 1859344   | 1930235 3.236435                     |
|             | 4 Naphthalene                    | 2985789          | 2924721  | 2923380  | 2823348  | 2835181  | 2838027        | 2857065  | 2749656  | 2887519          | 2851990   | 2/34/18        | 2699079   | 2796434           | 285/646   | 2771581   | 2824102   | 2935657   | 2833813           | 2892657   | 2840839 2.505205                     |
|             | 3 Phenol, 2,6-dimethyl-          | 978189           | 978573   | 928713   | 965756   | 948693   | 985203         | 948429   | 943077   | 954209           | 933592    | 923718         | 881751    | 906525            | 910305    | 949083    | 921430    | 961842    | 903246            | 969065    | 986697 3.151739                      |
| 4           | 2 benzene, nitro-                | 1502209          | 1293751  | 12//3/8  | 1265401  | 1304548  | 1255351        | 1259185  | 12/5/1/  | 1204911          | 1205095   | 1214270        | 12/30/6   | 1257205           | 1183900   | 1197120   | 1239004   | 1230515   | 1180878           | 1288636   | 1294203 3.130704                     |

1 von 1

Kommentare





# What about spectrum Quality in fast GCMS?



# Spe

# Spectrum Quality Fast GCMS





 Comprehensive two-dimensional gas chromatography in combination with rapid scanning quadrupole mass spectrometry in perfume analysis
 Luigi Mondello *et al:*

Journal of Chromatography A, 1067 (2005) 235–243

2. Comprehensive Two-Dimensional Gas Chromatography coupled to rapid-scanning Quadrupole Mass Spectrometer (GC<sup>-</sup>GC–qMS): Principles and Applications

Mohamed Adahchour, Menno Brandt, Hans-Ulrich Baier, René J.J. Vreuls and Udo A.Th. Brinkman:

Journal of Chromatography A

<u>Volume 1067, Issues 1-2</u>, 4 March 2005, Pages 245-254 Mass Spectrometry: Innovation and Application. Part IV





Inert: QP-2010 as default

## **Degradation of PEST in Ion source?**

#### Fenitrothion





## Inert: QP-2010 as default

- Data from the GCMS-QP2010
- Ion Source Temp: 200 °C



3.00